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ABSTRACT 1UC SANTA BARBARA

River restoration generally implies efforts to return the integrity and resilience of river forms,
processes and connectivity in the hope of a significant and sustained uplift in biodiversity. While I n -l- ro d uc -l-i on
there are various means of characterising changes in river forms and river connectivity, there

have been few methods for benchmarking fluvial geomorphic processes as a channel evolves. .
We showcase a rapid assessment protocol developed to quantify the mode and intensity of river .
channel adjustments and to assess whether the channel is functionally stable. Of note, we

separate field observations from their interpretative conversion into ‘adjustment indices’ to .
reduce inter-surveyor bias and allow for post-survey interpretative improvement. The approach

bec

eco engineering

River restoration usually aims to restore the ecological (i.e., physical and biological) integrity of river systems.

Evaluating the success of restoration activities ideally requires monitoring the evolution of forms, processes and connectivity and over a sufficient time
period to determine that the restoration actions have created a resilient and self-sustaining river environment.

Lack of effort/resources for establishing pre-project baseline conditions has seen the gradual development of self-referencing (i.e., benchmarked)
methods scoring from low to high, whereby the good score implies conditions that are near-natural or fully-functional. Examples: habitat inventory:
Gurnell et al., 2020; river connectivity van de Bund et al., 2024.

For river processes, multiple modes of river adjustment, operating at different intensities, prevent a singular score from low-to-high. In response, we
have developed an approach to codify and combine field observations to identify different modes of channel adjustment, the relative intensity of
such processes, and summary outcomes reflecting whether a channel appears functionally stable or instead displays signs of instability (Booth and
Downs, 2025; Downs et al., in prep.).

Results demonstrate the conversion of field observations into 14 modes of channel adjustment, 4 levels of apparent adjustment intensity, and summary
judgments about channel’s relative stability.

was tested in relatively undisturbed high elevation meadow channels in California and highly

modified lowland channels of Ireland. The method estimates 14 indices representing modes of .
channel adjustment, categorised into 4 levels of apparent intensity, and with integrative
outcomes summarising the channel’s sensitivity to change, lateral activity and relative instability.

As a rapid assessment, the approach is well-suited to pre- and post-project monitoring to judge

the evolutionary trajectory of channel adjustment processes and relative stability as part of .
benchmarking fluvial geomorphic processes for river management and restoration.

Method

Steps:

Convert observations to

)

. Assemble indicator set (=40) diagnostic of potential channel adjustment,

Apply
interpretative
framework

Structured Estimate 14
data

collection

. Make structured observations (‘read the river’) over a representative river reach (width-scaled), using values

Diagnostic
indictator

sef

non-linear extensiveness values (DAFOR variation, per Gurnell et al., 2020)

. Assemble individual observations (i.e., indicators of change) into suvites of observations (equations)

adjustment Combine values as

comparable scores

indicative of one particular mode of channel adjustment. 14 modes identified, with equations utilizing 1-9
indicators
. Convert Indicators to Values to Scores, taking care that Values in each equation are comparable and do

not create an inherent weighting towards certain indicators. Values are banded into Scores to allow
comparability between equations. Scores ranges from 0-3 according to negligible (0), some (1), moderate
(2) or considerable (3) evidence for change. Can revisit without jeopardizing field surveys.

. Group equations according to whether they could be interpreted as reflecting the channel’s inherent
sensitivity to change, evidence for lateral activity (e.g., as part of natural meander migration processes) or

whether the adjustments seemed indicative of prevailing channel instability.

3.Estimates of Adjustment
4.Convert Observations to

Values to Scores

2. Structured Data Collection
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5.Stability Interpretation

Field Tests and Results

Pilot field tests were undertaken in the summers of 2023 and 2024, high elevation meadows of the Sierra Neveda of California, and channelised lowlands of Ireland.

Reach summaries

e: West Walker River, CA

e: Jdmiespn Creek;CA « -
Surveydate: 13 August 2023 ;

e:Magoon Creek, Chu
Surveytate:7 Augi2023

The Reach Summaries illustrate generally expected re: Ma
Sury%?‘%it‘e:‘ 23;!#:% 2024 4

Banded scores from the 14 ‘mode of adjustment’ equations are provided under each photograph ranging from red where there is negligible evidence for change to adjustment type outcomes from the two environments

green where there is considerable evidence. The grouped scores for channel sensitivity to change, lateral activity and channel instability are shown as percentages The sampled rivers in California are generally sensitive to

inset on each photograph. change (composed of erodible materials and with little

. . constraining infrastructure), run a broad spectrum of
California (2003-24)
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sediment-led processes of channel
aggradation (see Heat Map).
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