

Restoring small streams: Effects on aquatic organisms

Lucie Sprecher, Tara Behnsen, Christine Weber

Swiss Federal Institute of Aquatic Science and Technology (Eawag). christine.weber@eawag.ch

Background

Invertebrates, fish, and aquatic and terrestrial plants were surveyed in 23 restoration projects in Swiss streams.

- -> see also our other poster on the left
- The comparison with a channelised control revealed improvements for all four organism groups (Fig. 1)
- The variability across sites was higher for plants than invertebrates and fish.

	a) Substrate vs. macrophyte community		b) Structural complexity vs. species diversi
alue [-]	0.7 0.6	tera	8 7

Figure 1: Selected metrics for the four organism groups studied across 23 restored reaches and channelised controls in Switzerland.

Interactive effects

The biotic effects were correlated with the abiotic effects observed in the habitat diversity surveys.

Substrate variability and patchiness (edge density)

Variability of the wetted width

- For instance, restored reaches with patchier substrates harboured more rare species of macrophytes (Fig. 2a).
- Restored reaches with a more variable width supported a greater diversity of stoneflies (Fig. 2b).

Figure 2: Interactions between restoration effects. Shown are the values observed in the restored reaches.

Context matters

Restoration effects were compared with project characteristics and catchment variables (e.g. land use) to explain the observed trajectories. Total number of EPT species in restored reaches

- For instance, restored reaches in catchments with a high load of total nitrogen tend to harbour fewer stonefly species.
- More results follow in autumn 2025.

Modelled diffuse input of total nitrogen [kg/ha*y]

Figure 3: Example of how contextual variables such as the total nitrogen load influence restoration outcome.