INTEGRATIVE SCIENCES

Assessing the geomorphic response and sensitivity of a Himalayan river to climate change and anthropogenic pressures

Nikita Karnatak^a, Shalini Singh^a, Anuj P Kushwaha^a, Louis Rey^c, Barbara Belletti^d, Herve Piegay^c, V Mishra^{a,b}, V Jain^{a*} a Department of Earth Sciences, Indian Institute of Technology, Gandhinagar, India, b Department of Civil Engineering, Indian Institute of Technology, Gandhinagar, India,

c Ecole Normale Superieure de Lyon, France, d National Centre for Scientific Research, France

Introduction

• River corridors are central to human settlement and activities. These are now facing degradation from urbanization, land-use change, and climatedriven shifts in hydrology including floods, sediment transport, and channel morphodynamics (Ward, 1978; Pielou, 1998; Konapala et al., 2020).

Despite future climatic and hydrological projections (Mishra et al., 2016), limited studies exist on its application to understand future change in river processes and geomorphic sensitivity.

• These interlinked human pressures and climatic stress on river systems demand integrated assessment to understand their combined impact on river morphodynamics.

Objectives

To asses geomorphic response and sensitivity of a Himalayan river in response to anthropogenic stresses and changing climate scenarios.

Study Area

Fig.4 Geomorphic Parameters variability from Mountain Front to Vrindavan

Elevation map of Yamuna basin

Fig.1 Elevation Map of Yamuna Basin

Fig.6 Geomorphic Parameters variability upstream and downstream of dam

Fig.7 Geomorphic Parameters variability upstream and downstream of Delhi Megacity

Fig.3 Dataset Availability Graph: Each bar indicate number of years of satellite data used for each DGO. Here, 460 km river channel reach is divided into 92 DGOs of equal length.

Conclusion

- The study highlights the need for sustainable, reach-specific strategies to address compounded stressors.
- An interdisciplinary, reach-scale approach is essential to enhance ecological resilience and ensure the long-term health of rivers.

- Best, J.. Nature Geosci 12, 7–21 (2019). https://doi.org/10.1038/s41561-018-0262-x
- Downs, P.W. and Piégay, H., (2019) Geomorphology, 338, 88-104, https://doi.org/10.1016/j.geomorph.2019.03.021
- Jain, V. and Sinha, R., Singh, L. and Tandon, S. (2016). Proceedings of the Indian National Science Academy. 82. 10.16943/ptinsa/2016/48482.
- Kushwaha, A.P., Tiwari, A.D., Dangar, S., Shah, H., Mahto, S.S., Mishra, V., 2021. Journal of Hydrology 603, 126977.https://doi.org/10.1016/j.jhydrol.2021.126977
- Mishra, Ashok & Kumar, Goutam. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications. 11. 10.1038/s41467-020-16757
- Pielou, E. C. (1998). Fresh Water. United Kingdom: University of Chicago Press.
- Ward, R.C. (1978) Floods: A Geographical Perspective. Macmillan Press, London.