

Autosurveillance de Saint-Etienne Métropole (42) : Valorisation des données en temps réel pour la gestion du système d'assainissement de la ville de Saint-Etienne

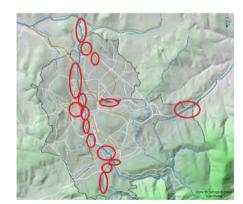
Hervé Mijat, Saint-Etienne Métropole et Nathalie Reydemaneuf, Suez Environnement

Historique: Situation avant 2004

Réseaux de collecte

Sur les 2 bassins versants :

- Travaux sur St Etienne ville (Furan)
- Travaux sur Terrenoire (Gier)
- > Furan = collecteur historique Couvert au fil du temps pour des questions sanitaires et d'espace disponible
- > Réseaux de collecte parallèle au Furan existant mais discontinu
- > Reiets directs des collecteurs aux croisements avec le Furan
- > 90% de la pollution collectée par le Furan, puis Furan traité sur la station d'épuration seulement 10% collectés par l'émissaire général


Historique: Travaux Réseaux & STEP

• Réseaux de collecte

Travaux de mai 2004 à octobre 2008, réalisés en 5 programmes

- Création de collecteurs continus jusqu'à la station d'épuration
- Déconnections des reiets directs au Furan
- Déviation du Furan sur certaines parties

- Coût : 20 millions d'euros HT
 - dont 17 millions pour le Furan
 - dont 3 millions pour le Gier

Historique: Travaux Réseaux & STEP

Le Furan – Cours Victor Hugo

Historique: Travaux Réseaux & STEP

• Station d'épuration FURANIA

Travaux d'avril 2006 à juin 2009

Objectifs de la restructuration :

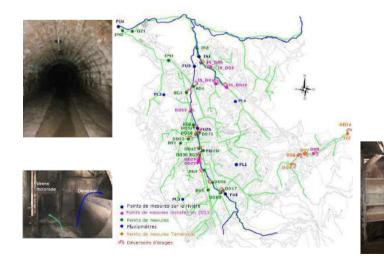
- ➤ Amélioration des rendements sur la filière biologique (7500 m³/h)
- Création d'une filière de traitement temps de pluie de 12000 m³/h
- Améliorer le volume de traitement sur la station
- > Traiter l'azote et le phosphore
- Améliorer la qualité des eaux du Furan et de la Loire.

Coût: 75 millions d'euros HT

* Maîtrise d'ouvrage : ville de Saint - Etienne

Les points clés du système de collecte

- un réseau unitaire et gravitaire très réactif en temps de pluie : rapidité et intensité avec des risques d'inondation Ciblés
- > aucun bassin de stockage à l'amont du centre ville


- > délestage dans le milieu naturel à l'aide de vannes motorisées.
- > stockage possible dans le réseau pour les faibles intensités
- > contraintes liées aux apports d'eau des communes extérieures
- station d'épuration FURANIA : 2 filières EAU, avec un débit d'entrée max de 5,4 m³/s

Stratégie choisie

Choix d'ajuster le système de collecte à hauteur de la capacité de FURANIA soit 5.4m³/s.

Plan simplifié du réseau

L'auto surveillance

- Mise en place de l'auto surveillance et équipement des points réglementaires : De 2002 à 2013

- Un suivi et analyse permanent de :
 - 66 capteurs du suivi permanent du réseau dont :
 - _ 12 points sur les collecteurs
 - _ 27 DO équipés sur 96
 - 4 pluviomètres

- Exploitation, capitalisation et intégration des données dans le système de pilotage temps

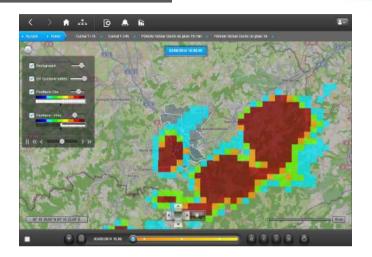
Un système innovant sur Saint-Etienne Métropole

- Pourquoi la mise en place d'un système de pilotage du réseau d'assainissement à Saint-Etienne ?
 - gestion des petites pluies (<1mois) : éviter les déversements
 - gestion des pluies (>1mois): améliorer l'impact sur le milieu naturel
 - gestion du risque inondation
 - satisfaire la directive-cadre sur l'eau européenne
- Les outils existants développés par Stéphanoise des Eaux
 - gestion à distance des 7 vannes motorisées via la supervision
 - un modèle numérique Infoworks (~2 000 arcs, 260 BV)
 - l'analyse de 66 capteurs du suivi permanent du réseau : 12 points collecteurs, 27 DO équipés
- Une mise en service effective à partir du 04/08/2014

Définition des stratégies de gestion

10° journée d'échange

Stratégie	Objectifs Gestion	Pilotage	
TEMPS SEC	Gérer les apports de temps sec vers la STEP	Réseau statique Vannes ouvertes par défaut	
DEPOLLUTION	Eviter les débordements Limiter les dévorcements Alimenter la STEP à sa capacité nominale Favoriser le traitements des flux les plus chargés	Favoriser l'utilisation des capacités (transport et stockage) disponibles	
INONDATION 💝	Eviter les débordements	Configuration sécuritaire : Délester le réseau au plus vite	


Principe fonctionnel Données d'enfrées Prévision rafar (1 heure) Métiologie Prévision rafar (1 heure) Modèle lemps réel Infoworks CS Achonitation homes rée Dennées Confectuelles Dennées Confectuelles Dennées Supervision / IHM INFILIX Modèle lemps réel Infoworks CS Achonitation homes rée Dennées Confectuelles Dennées Dennées

Vue d'accueil Supervision

Image radar

Coûts

Spécifique au réseau Stéphanois :

Matériel

- Automatismes
- Amélioration des télétransmissions
- Equipements des vannes motorisées

174 000 € HT sur 15 sites

Mises à niveau du matériel, études, spécifications, intégrations, développement et tests

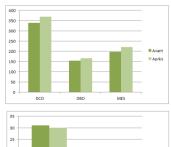
813 000 euros HT

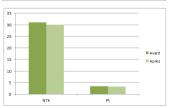
- D'un module de gestion des données météorologiques
- D'une supervision : affichage temps réel des données d'entrées des modules de stratégies, des alarmes
- D'un modèle temps réel
- Aménagement des déversoirs des bassins

563 900 € HT

75 100 € HT

Exploitation


Bilan



- Réduction du nombre de déversements
- Diminution attendue en m3 entre 10 et 15% de volumes traités et jusqu'à 20%

mg/l	Avant	Après	Δ
DCO	340	369,5	9%
DBO	154	165,5	7%
MES	198	222	12%
NTK	31	30	-3%
Pt	3,5	3,3	-6%

Avant: Moyenne 2012, 2003, et \$1+07-2014 Après : Moyenne 08-2014 à 02-2015

Perspectives

- > Optimisations des installations existantes :
 - Optimisation des consignes
 - Bassin de stockage
 - Collecteurs (seuils variables DO)

- > Cibler les zones à équiper et dimensionner les ouvrages futurs
- > Intégration du BV de l'Isérable
- > Modélisation hydraulique du Furan

MERCI pour votre attention

