

MÉTROPOLE

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

14h30-16h30

Au programme de ce RDV!

UNE VISION

l'ensemble des parties prenantes sensibilisées et formées

UNE STRATEGIE

et un cadre d'action favorable

DES REALISATIONS et des opérations exemplaires Emma Girot & Maud Génissel , INSA Lyon Deep, RECOVER, INRAE Aix-Marseille (FR) |

Résultats d'enquêtes sur l'entretien des solutions de gestion des eaux pluviales.

Sophie Duchesne, Marie-Ève Jean, INRS Centre Eau Terre Environnement – Québec (CA) & Laura Milena Solarte Moncayo |

Analyse coûts-avantages des infrastructures vertes EP / Milieu urbain

Robin Dagois, Plante & Cité – Angers (FR) | Les noues végétalisées : potentiel / zones humides et biodiversité

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Synthèse

Le webinaire France-Québec « Ville perméable » s'inscrit dans le cadre de la recherche et le développement des solutions de gestion des eaux pluviales à la source et solutions fondées sur la nature. Animé par le GRAIE et la métropole de Lyon, ce webinaire s'inscrit dans le partenariat avec les villes de Montréal et de Québec et les Ateliers Ublo. Cette année, nous avons monté cette rencontre en collaboration avec l'Adopta et Redagieo, dans le cadre de l'animation du réseau francophone des animateurs eaux pluviales, avec le soutien du Ministère français en charge de la transition écologique et des agences de l'eau Rhône Méditerranée Corse et Loire Bretagne.

Le webinaire a rassemblé plus de 200 participants francophones, de France, Canada, Belgique, Luxembourg et Suisse venant des secteurs concernés (services techniques eau et autres, bureaux d'études, centres de recherche publique, ...).

3 axes forts à retenir des présentations et des échanges de ce webinaires :

L'entretien des solutions fondées sur la nature dédiées à la gestion des eaux pluviales ne doit pas être un frein à leur développement.

Les études réalisées en France, au Québec et à Melbourne (Australie) ont montré que la gestion de ces ouvrages était souvent confiée à plusieurs services qui n'ont pas forcément conscience de toutes les fonctionnalités, ce qui entraîne de mauvaises pratiques et un manque de coordination. La concertation en amont, l'attribution des rôles et des budgets, le partage sur les fonctionnalités multiples et la formation ou l'échange sur les pratiques d'entretien sont des leviers efficaces et nécessaires pour faciliter l'entretien.

La compréhension et le partage des connaissances est un atout majeur à améliorer.

De manière générale, il y a une méconnaissance des solutions fondées sur la nature et de leurs fonctionnalités de la part du grand public et des différents services en charge de la gestion des espaces et des ouvrages. Le constat est malheureusement assez similaire dans la littérature scientifique internationale.

L'efficacité des Solutions Fondées sur la Nature (SfN) dépend de l'anticipation de la gestion des ouvrages dès leur conception.

Du fait d'un manque d'expertise et de coordination entre les différents services en charges de la conception et de l'entretien des solutions fondées sur la nature pour la gestion des eaux pluviales, celles-ci remplissent difficilement la totalité de leurs fonctions potentielles.

Les bonnes pratiques d'entretien des ouvrages de gestion à la source des eaux pluviales sont primordiales pour une efficacité optimale sur la réduction des rejets d'eaux pluviales, la réduction des coûts et l'optimisation des multiples bénéfices qui en découlent.

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Synthèse

1. Résultats d'enquêtes sur l'entretien des solutions de gestion des eaux pluviales

Emma Girot mène un travail de recherche entre INSA Lyon et INRAE Aix-Marseille dans le cadre du projet GestPatPluvO, sur la Gestion patrimoniale durable et multi-échelle des solutions fondées sur la nature dédiées aux eaux pluviales urbaines. Elle a lancé une enquête sur les pratiques d'entretien sur le territoire français. Les réponses ont porté essentiellement sur des ouvrages publics centralisés (cad permettant de gérer l'ensemble des eaux pluviales d'un bassin versant par un dispositif unique et/ou en un lieu unique, comme les bassins de rétention) et beaucoup moins sur les ouvrages décentralisés (dédiée à la gestion des eaux pluviales à la source du ruissellement ou à proximité de cette source, comme les arbres de pluie). Ce vocabulaire reste d'ailleurs à consolider et porte des interprétations différentes. On retrouve ainsi essentiellement des réponses liées aux ouvrages centralisés : pour les pratiques d'entretien une forte proportion de réponses sur le curage, face aux problématiques que sont l'accumulation de sédiments, le colmatage, un volume de stockage insuffisant, un régulateur de débit défectueux, ... Maud Génissel a mené des interview semi-directives sur les synergies et contraintes dans l'entretien des SfN au regard des enjeux de biodiversité au sein de services assainissement et espaces verts des collectivités. Elle a constaté que souvent les SfN sont bien perçues et appréciées, mais leur fonction hydraulique reste méconnue. En conséquence, les pratiques d'entretien ne sont pas adaptées pour respecter les multiples fonctions des ouvrages. Le manque connaissance et d'organisation de ces pratiques ainsi que leurs entretiens a été démontré comme potentiellement pénalisant.

Une enquête internationale sur la gestion des SfN dédiées aux eaux pluviales va avoir lieu en décembre 2024 et un guide des bonnes pratiques de gestion des SfN pour la biodiversité est en préparation.

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

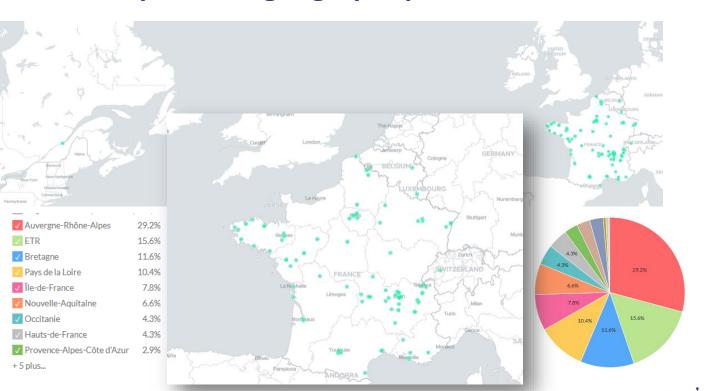
Synthèse

2. Analyse coût-avantages des infrastructures vertes pour le contrôle à la source des eaux pluviales en milieu urbains

Les chercheuses de l'INRS ont réalisé une étude pour l'observatoire de la gestion intégrée de l'espace public urbain du CERIU sur les coûts d'entretien, leur impact sur les performances hydrologiques et la mise en œuvre de programmes d'entretien. Ces recherches ont été menées en trois parties : entretiens dirigés avec les services concernés, analyse de la littérature scientifique et études de cas. Il en ressort des difficultés similaires à celles évoquées dans l'enquête française, notamment l'éparpillement des responsabilités, les conséquences en termes d'organisation, d'inventaire incomplet, de perception des besoins, ... mais aussi quelques stratégies exemplaires, que ce soit des équipes pluridisciplinaires dédiées, des guides d'entretien partagés, ou la mobilisation d'animaux brouteurs pour simplifier l'entretien. Les coûts d'entretien de ces solutions sont très variables mais des bonnes pratiques semblent pouvoir les réduire et améliorer la durabilité des ouvrages. Malgré le manque de documentation sur ce sujet, il est possible d'appuyer la décision avec des projections climatiques et d'occupation du sol, les coûts du cycle de vie des ouvrages, les coûts évités, les performance et avantages.

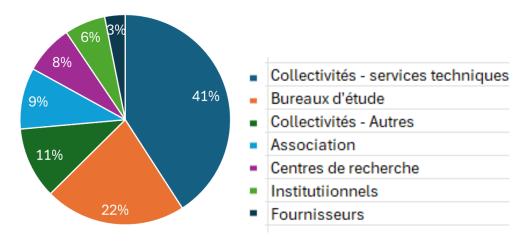
3. Les noues végétalisées : quel potentiel en matière de zone humide et de support de biodiversité ?

Robin Dagois présente les premiers enseignements du programme N'OUPS: pour une meilleure prise en compte des fonctionnalités écologiques des noues végétalisées. Cette étude vise à étudier 9 noues et leur mode de gestion (pratique d'entretien), avec des disparités géographiques et climatiques, afin de mettre en place des préconisations techniques pour plus de multifonctionnalités. Elle a montré que les ouvrages recensés, bien que végétalisés, ne sont souvent perçus qu'avec leur seule fonction hydraulique alors que les SfN sont hybrides. Les décisions prises en matière de gestion des solutions devraient faire l'objet d'une réflexion sur les multi-usages qu'ils proposent et en faveur de l'écologie. Ainsi il est proposé de poursuivre les travaux afin de proposer des recommandations quant aux éléments de conception écologique (notamment adéquation plantations - sol - environnement), l'anticipation de l'évolution du système d'un aménagement vers un écosystème et enfin l'adaptation des programmes d'entretien au regard de cet enjeux écologique.



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Bienvenue

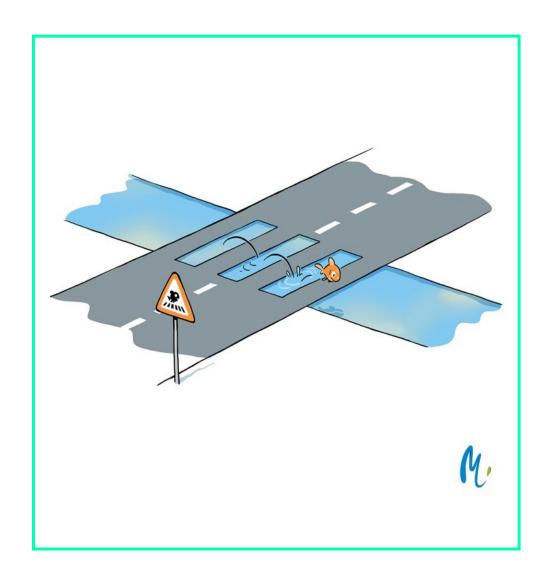

Répartition géographique :

Nombre d'inscrits
346
217

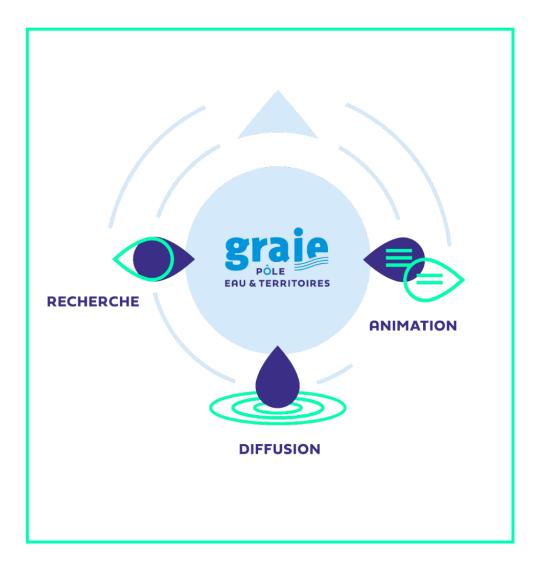
Membres du Graie
67
Nouveaux contacts
159

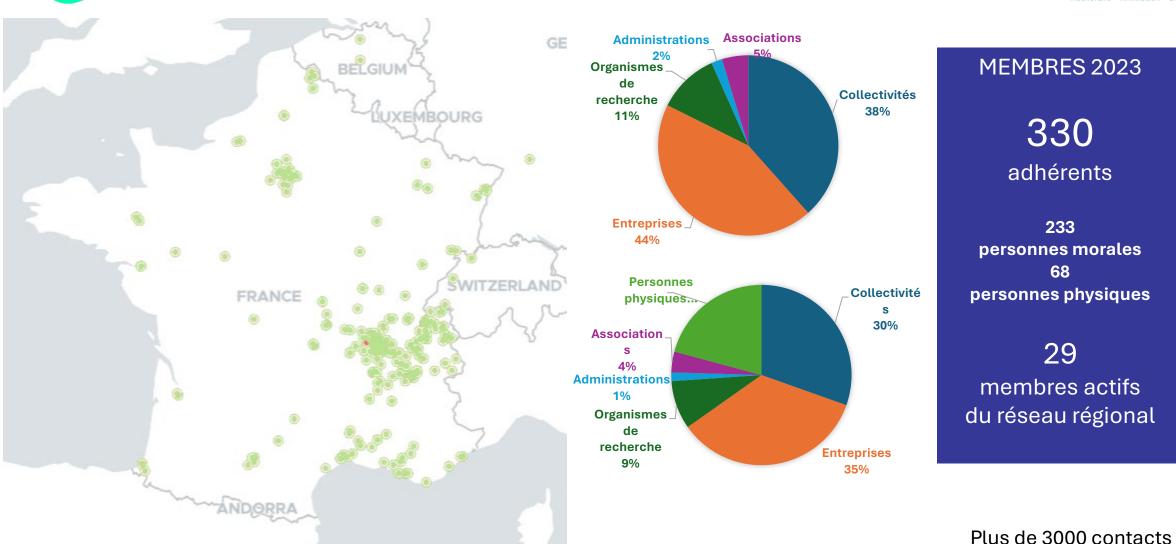
Répartition par activité :

STAIL POLE EAU & TERRITOIRES



France, Canada, Belgique, Suisse, Luxembourg ...





> Les membres du Graie

dans la base

10 étrangers : Suisse Belgique Pays Bas Luxembourg Canada

> Les partenaires du GRAIE

Soutenu par

ResiRiver

Nombreux partenaires spécifiques aux conférences internationales: mécènes et associations scientifiques et techniques, nationales et internationales

GESTION INTÉGRÉE DE L'EAU DANS I A VII I F

RECHERCHE

OTHU

Observatoire de Terrain en Hydrologie Urbaine

 10 programmes de recherche en appui

 CO-EAUPLUVIALE Collaboration France-Québec

DIFFUSION

Publications

- Notes, guides et outils méthodo
- Observatoire des opérations exemplaires
- Méli mélo Démêlons les fils de l'eau

Accompagnement

- Organisation de rencontres locales
- Atelier Ville perméable
- Formations

Conférences

- Villes perméables
- NOVATECH 12^e conférence internationale en 2026 - sur l'eau dans la ville 29 JUIN – 3 JUILLET 2026

ANIMATION

Régionale : Groupes de travail

- Autosurveillance
- Eaux pluviales et aménagement
- Effluents non domestiques
- Exploitants de stations d'épuration

National:

- RFATEP Les animateurs territoriaux eaux pluviales
- La gestion des effluents non domestiques
- Contribution au plan d'action national eaux pluviales

INTERNATIONAL

Co-eauxpluviales FR-CA

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Les partenariats

Le RFATEP – réseau francophone des animateurs eaux pluviales

Graie - Adopta - Redagieo

- → La plateforme Expertises-territoires
- → RDV 1 à 2/an POITIERS les 19-20 novembre

CO.EAUXPLUVIALES FR – CA

Grand Lyon – Graie - Montréal – Québec – Ateliers Ublo

- → Webinaires "ville perméable" 1/an depuis 2019
- → Balados eaux pluviales

UNE SÉRIE DE BALADOS

SUR LA GESTION INTEGRÉE DES EAUX PLUVIALES

Une Coopération France-Québec

CO EAUPLUVIALE FR-CA

- Partager - Diffuser - Innover

PRÉSENTEZ VOS INNOVATIONS

et faites rayonner vos idées

Le Balado "Où va l'eau ?" approche à grands pas ! Il sera disponible avant la fin de l'année sur toutes les plateformes dédiées et sur le site du GRAIE.

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Les rendez-vous « Ville Perméable » du Graie

Conférences et échanges entre France Québec et ailleurs :

- Retour sur des opérations « ordinaires » ou emblématiques, pour faire la démonstration par l'exemple.
- Approches transversales, multidisciplinaires et pluri-acteurs, tant dans l'élaboration des stratégies que dans la mise en œuvre des opérations d'aménagement.
- Accompagnement du changement
 en appui sur cette chaîne d'acteurs variés, qui interviennent –
 pour certains malgré eux sur la gestion de l'eau

WEBINAIRE FRANCE - QUÉBEC | VILLE PERMÉABLE

Techniques de gestion à la source des eaux pluviales | pratiques, d'entretien, couts, avantages et potentialités

8 NOVEMBRE 2024

Zoom sur la gestion des solutions fondées sur la nature et les enjeux de biodiversité

Emma Girot – DEEP, INSA Lyon et RECOVER, INRAE Aix-Marseille

Maud Génissel - RECOVER, INRAE Aix-Marseille

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Projet GestPatPluvO

- Gestion patrimoniale durable et multi-échelles des solutions fondées sur la nature (SfN) dédiées aux eaux pluviales urbaines
- Equipe projet interdisciplinaire

Hydrologie urbaine

Emma Girot

Génie urbain, aide à la décision, gestion patrimoniale

Frédéric Cherqui

Soutien financier

Ecologie, connectivité écologique, services écosystémiques

Sylvie Vanpeene, Maud Génissel

Sciences de gestion, gestion des services d'eau et d'assainissement

Christophe Wittner, Rikyelle Nguematio

Gestion des risques

Aide à la décision

Approches participatives

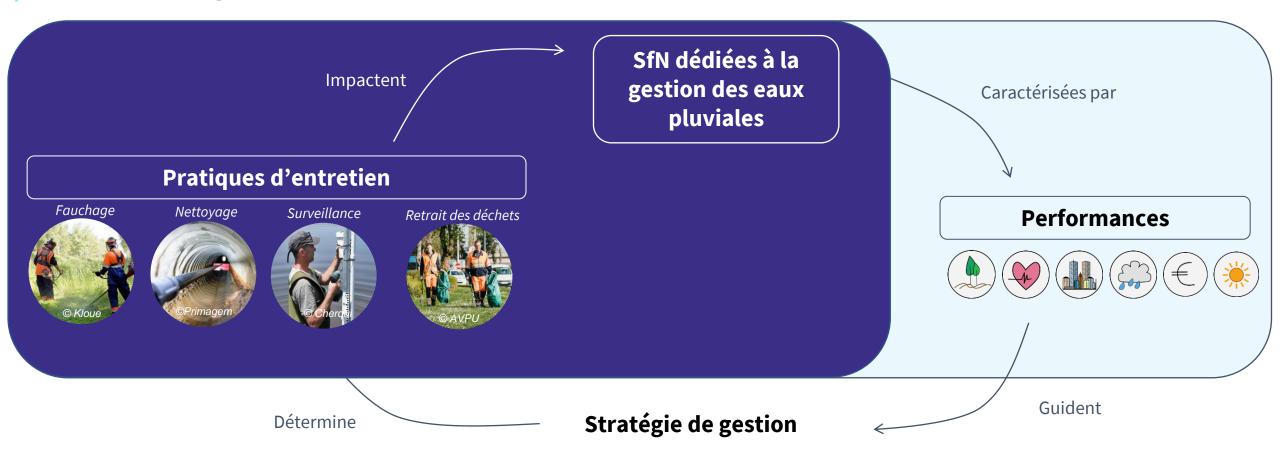
Franck Taillandier

Gestion patrimoniale

Corinne Curt

Diagnostic territorial

Pascal Di Maiolo



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Projet GestPatPluvO

Guider la gestion à l'aide d'un modèle

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Enquête française

Objectif:

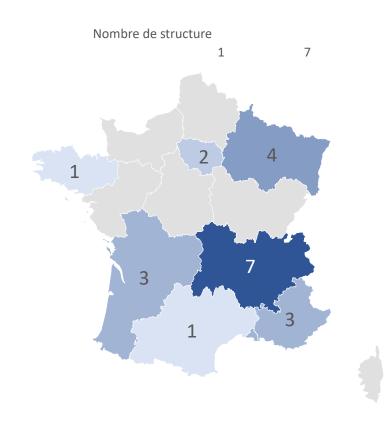
Retour d'expérience opérationnel de la gestion des solutions de gestion des eaux pluviales : types de solutions, pratiques d'entretien, fréquence d'entretien, dysfonctionnements, causes de dysfonctionnements....

Public visé :

Gestionnaires et opérateurs français des solutions de gestion des eaux pluviales

• Période d'enquête : 21 mars – 10 mai

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités


Résultats de l'enquête française

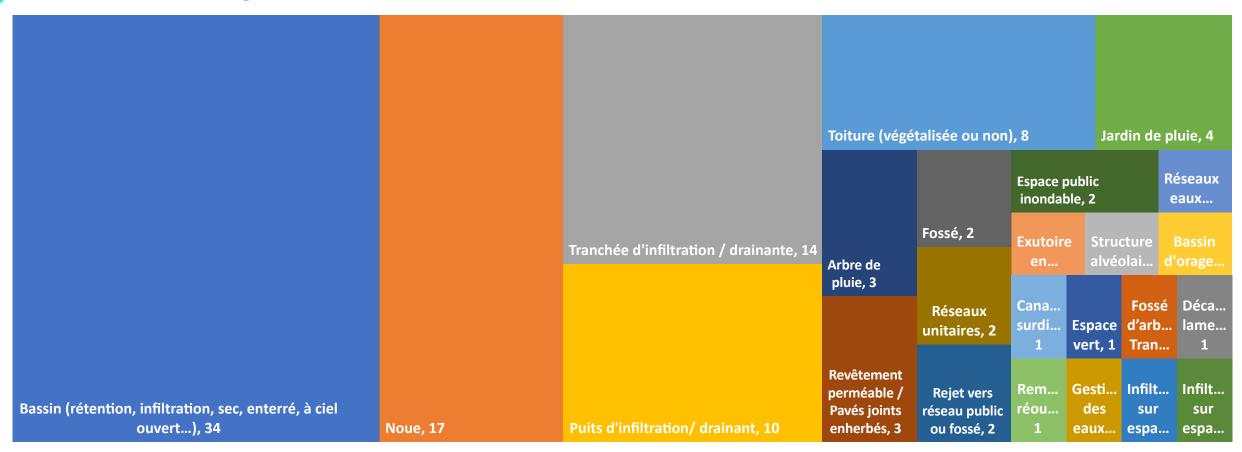
Participation

Taux de réponse : 6% (21 enquêtés sur 357 connexions)

	Fonction	Nombre de réponses	Pourcentage (%)
Gestionnaire public	Technicien.ne	4	19
	Ingénieur.e	10	48
	Chef.fe de service	5	24
Constructeur de solution	Ingénieur.e	1	5
MOE / Enseignant chercheur	Paysagiste concepteur / Chef de projet /	1	5
	Maître de conférences		

Profil des enquêtés

Répartition géographique par région des enquêtés



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête française

Solutions représentées

Nombre de mentions selon le type de solutions

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités


Résultats de l'enquête française

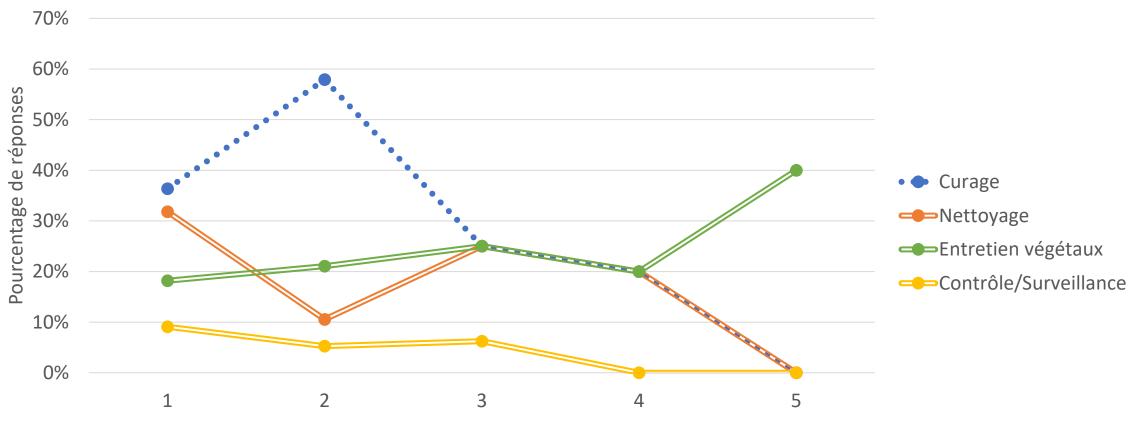
Solutions représentées

Distinction entre solution centralisée VS décentralisée peu claire

Une solution dite centralisée permet de gérer l'ensemble des eaux pluviales d'un bassin versant par un dispositif unique et/ou en un lieu unique.

Bassin de rétention

Une solution dite décentralisée est dédiée à la gestion des eaux pluviales à la source du ruissellement ou à proximité de cette source.

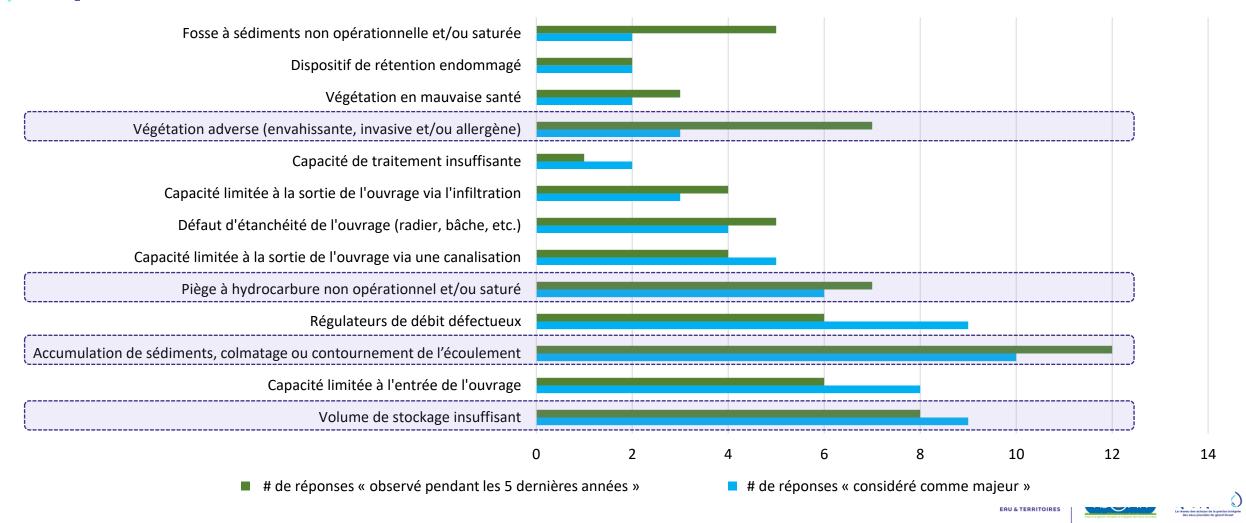


Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête française

Opérations d'entretien

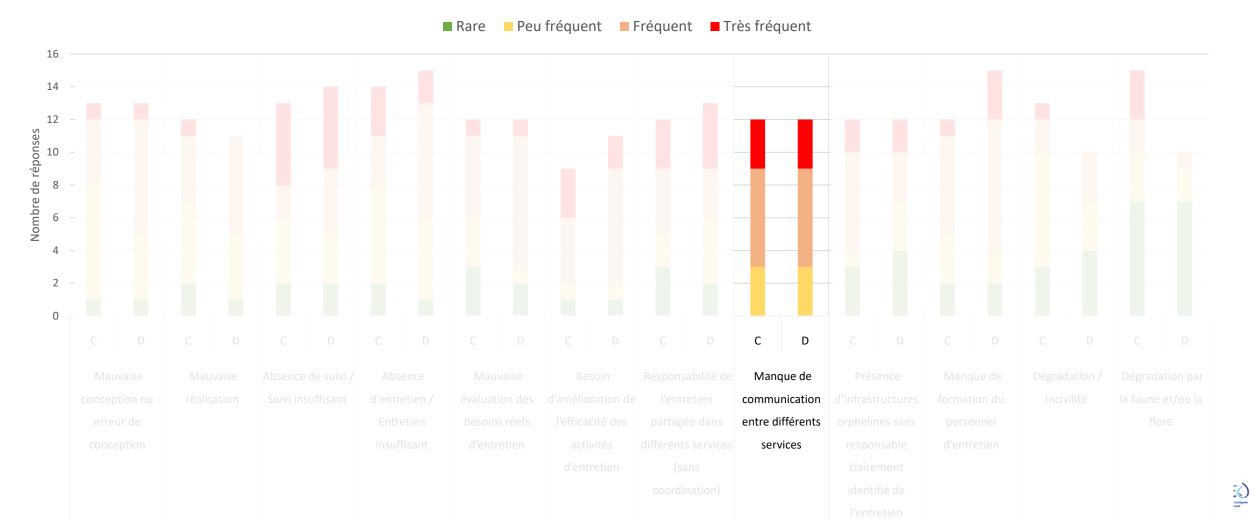
Classement des opérations par ordre d'importance (1 étant la plus importante et 5 la moins importante)



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête française

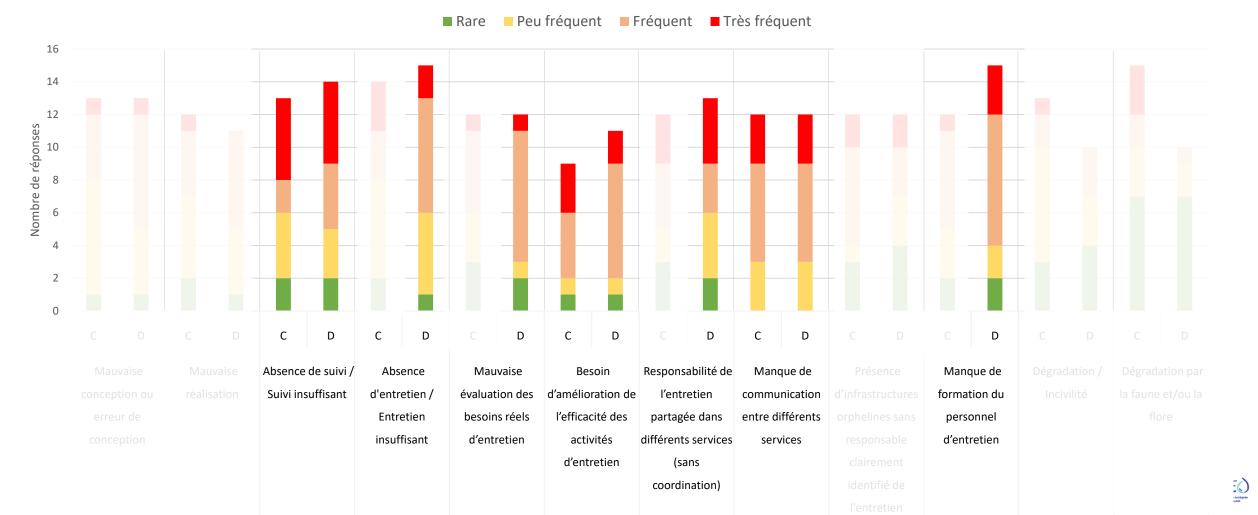
Dysfonctionnements observés



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête française

Récurrence des causes de dysfonctionnements



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête française

Récurrence des causes de dysfonctionnements

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Zoom sur les SfN dédiées aux eaux pluviales

Gestion différenciée des espaces verts

95% des enquêtés appartiennent à un service axé assainissement et eaux pluviales

38% ont la responsabilités des espaces verts

75% pratiques la gestion différenciée

100% limitent le nombre de tontes

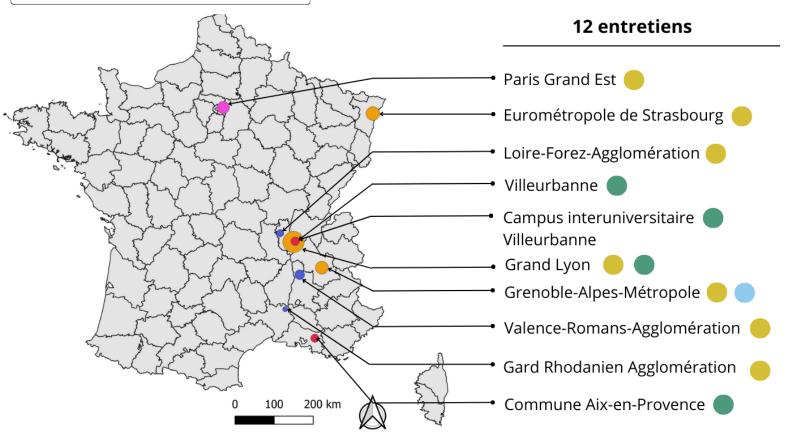
67% laissent le bois morts et les déchets verts sur place

50% règlent la hauteur de coupe

17% pratiquent l'écopâturage

Quelles sont les synergies et les contraintes de la gestion des SfN en regard des enjeux de biodiversité ?

Staie PÔLE EAU & TERRITOIRES



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Interviews semi-directives

Enquête - gestionnaires publics

Collectivités interrogées selon leur type et leur nombre d'habitants. ©Génissel

Type de collectivité

- Commune
- Communauté d'agglomération
- Etablissement Public Territorial
- Métropole

Nombre d'habitants

- 0 100 000
- O 200 000
- 500 000
- 1 000 000
- 1 500 000

Type de service

- Service assainissement
- Service espaces verts
- Service voirie

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Resultats interviews semi-directives

Analyse lexicale

« Aménagement, ouvrages hydrauliques et entretien de la végétation »

bassin ouvrage

infiltration

rétention

protéger

solliciter

enterrer

prendre

noues

curer

finir

type

coup

réseau

hydraulique

arbre

planter

bordure

mètre

terre

rendre

bande

refaire

strate

cours

hectare

compte

plantation

pieds arbres

caniveau

carré

arbuste

laisser faucher

campus fois tonte année couper

pousser ciel ouvert entretenir premier considérer végétation tranchée zone

> milieu passer passage mec

endroit

« Administration et communication »

service gerer métropole espace public

voie ville voirie sein compétence

collectivités co projet responsable

direction communal collèque

strasbourg agglomération

communica

formation parler à dessus question journée action regarder biodiversité thématique justement aimer sensibiliser enjeu accompagner intéressant

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

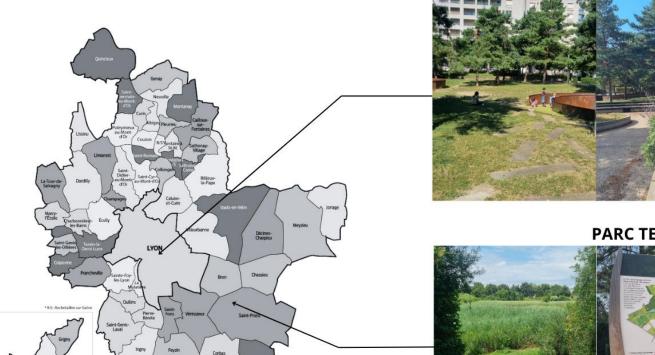
Resultats interviews semi-directives

Analyse thématique

Les multiples services en charge des SfN de type 'Noue' sur le territoire du Grand Lyon

Techniciens jardiniers metropole Communes service espaces verts Service voirie Noues Groupe ville permeable Insectes Service_espaces_verts_campus Service nature et fleuve Service_espaces_publics_naturels_Villeurbanne Service_metropole_exploitation

Réseau d'acteurs (organisé par la spatialisation Force Atlas 2.) Zoom sur l'acteur « Noues ».



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Enquête sociologique

Enquête - usagers des SfN

PARC JACOB KAPLAN

Territoire Grand Lyon. Source : Tribune de Lyon.

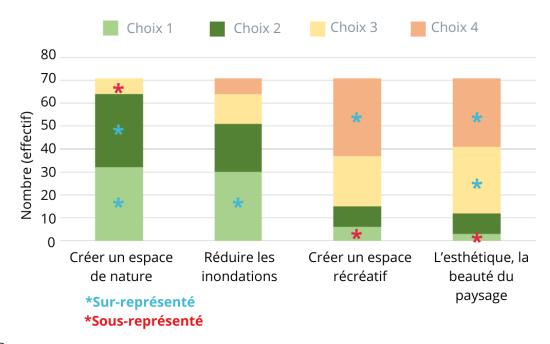
PARC TECHNOLOGIQUE

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête sociologique

Perception des SfN: des ouvrages peu connus...

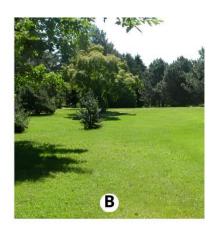
• Méconnaissance de la fonction hydraulique des parcs et du terme SfN par plus de 80%


... mais perçus positivement

- 80% des usagers souhaitent en apprendre plus à l'occasion
- Les SfN sont des solutions fiables et durables (n = 68) :

• Les SfN contribuent positivement à l'environnement du parc (n = 71) :

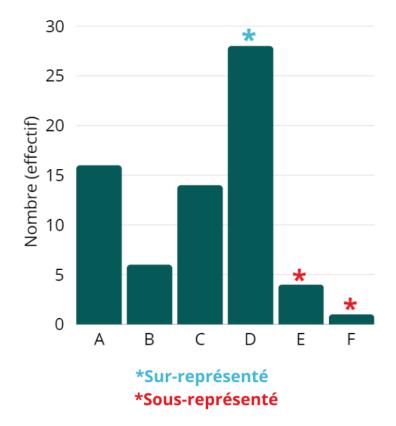
Classement de quatre bénéfices des SfN selon leur importance pour les usagers : (n = 71)



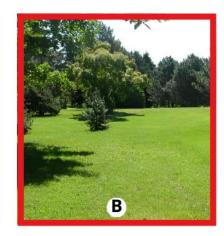
Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Résultats de l'enquête sociologique

Préférences de gestion



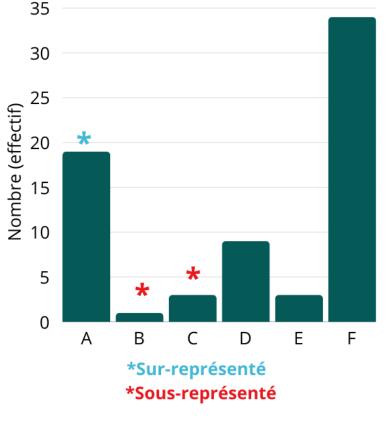
Quelle photo vous plaît le plus ? (n=69)



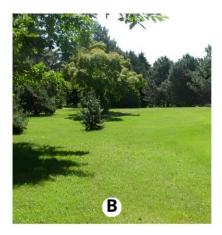
Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

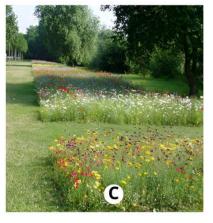
Resultats de l'enquête sociologique


Préférences de gestion



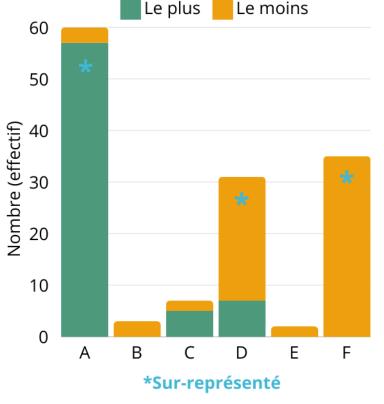
Quelle photo vous plaît le moins ? (n=69)




Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Resultats de l'enquête sociologique

Perception de la biodiversité



Selon vous, quel espace est le plus vs. le moins propice à la biodiversité ? (n=69)

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Conclusions

Gestionnaires publics

- Une gestion fragmentée entre services et des pratiques d'entretien hétérogènes
- Des incohérences dans la répartition des tâches qui vont impacter l'efficacité des SfN pour la biodiversité
- Contraintes organisationnelles liées au caractère multifonctionnel
- Manque de connaissance

Usagers

- Des préférences qui demandent de trouver un équilibre entre les critères esthétiques et récréatifs et les objectifs de biodiversité.
- Des ouvrages encore méconnus, mais perçus de manière positive

- > Nécessité de former et faire dialoguer les gestionnaires pour coordonner les pratiques
- > Nécessité de déterminer les performances attendues de chaque SfN
- > Adapter les pratiques d'entretien et concevoir un plan de gestion sur le moyen et le long terme
- ➤ Nécessité de sensibiliser les citoyens sur la présence de SfN qui s'intègrent dans le paysage urbain et de leurs fonctions, notamment pour la biodiversité, pour encourager l'acceptation d'une gestion extensive

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

La suite ...

- Inventaire des pratiques et des connaissances
- Les retours d'expériences alimenteront un modèle permettant de guider les pratiques de gestion sur le long terme en fonction des performances attendues
- > Guide technique des bonnes pratiques de gestion des SfN pour la biodiversité En préparation

WEBINAIRE FRANCE - QUÉBEC - VILLE PERMÉABLE | 8 nov. 2024

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

La suite ...

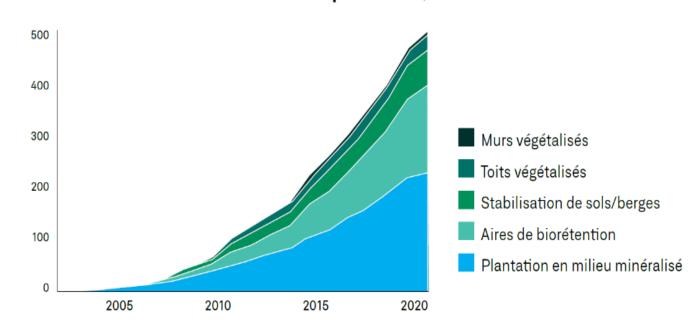
A retrouver sur le site du projet <u>GestPatPluvO (inrae.fr)</u>:

- Rapport de stage de Maud Génissel: Synergies et contraintes de la gestion de la végétation des SfN en regard des enjeux de biodiversité Application à la gestion des eaux pluviales urbaines
- <u>Rapport de stage de Rikyelle Nguematio</u>: Contribution à l'élaboration d'un outil d'estimation des coûts d'exploitation des solutions fondées sur la nature pour la gestion des eaux pluviales urbaines en France

Merci de votre attention!

Analyse coûts-avantages des infrastructures vertes pour le contrôle à la source des eaux pluviales en milieu urbain

Marie-Ève Jean, Laura Solarte et Sophie Duchesne


Mise en contexte

Intégration grandissante des infrastructures vertes comme mesures de contrôle à la source des eaux pluviales, mais peu de connaissances sur:

- Les coûts d'entretien
- L'impact des activités d'entretien sur la performance hydrologique
- La conception et la mise en œuvre de programmes d'entretien

Québec Vert (2022)

Nombre cumulatif d'infrastructures végétalisées réalisées dans les municipalités du Québec

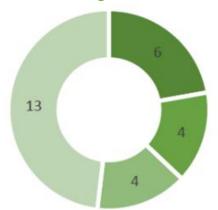
Mandat confié à l'INRS par l'Observatoire

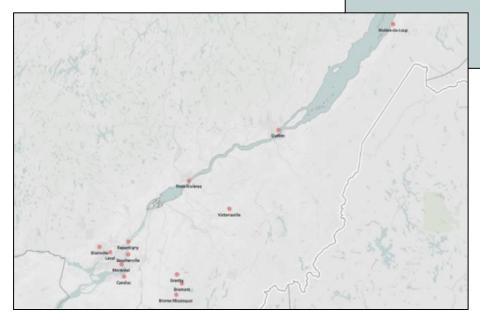
Titre: Analyse coûts-avantages des infrastructures vertes pour le contrôle à la source des eaux pluviales en milieu urbain

Réalisé en trois parties :

- 1. Revue des coûts, des besoins et des pratiques d'entretien <u>par des</u> <u>entrevues personnalisées</u> (municipalités et autres organismes) PUBLIÉ (Marie-Ève Jean)
- 2. Revue des coûts, des besoins et des pratiques d'entretien <u>par une</u> <u>revue de littérature</u> (rapports techniques et articles scientifiques) PUBLIÉ (Laura Solarte)
- 3. Analyse avantages-coûts des infrastructures vertes de gestion des eaux pluviales <u>sur des cas d'étude réels</u> (réseaux unitaires) PUBLIÉ(Laura Solarte)

1ère partie : Revue des coûts, des besoins et des pratiques d'entretien par des entrevues personnalisées




Objectif du 1er rapport

Évaluer les pratiques et les coûts liés à l'entretien des infrastructures vertes par une revue de cas d'applications réels et d'expériences de terrain

Participants

- Québec
- Canada (Québec exclu)
- France
- Melbourne

Entretien ZOOM avec la ville de Candiac, 2022

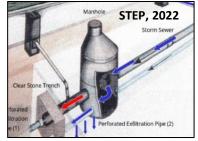
Méthodologie – 1ère partie

Entretiens dirigés

Collecte de données qualitatives/quantitatives

Infrastructures étudiées:

- Noues végétalisées
- Aires de biorétention
- Pavages perméables
- Systèmes d'infiltration ou d'exfiltration sous chaussée
- Toits verts
- Fosses d'arbres
- Systèmes de récupération d'eau de pluie d'eau de pluie



Enjeux d'entretien

- Responsabilité de l'entretien éparpillée dans différents services et divisions
- Délais de traitement organisationnel et de traitement de la donnée
- Inventaire inexistant ou incomplet des infrastructures
- Infrastructures orphelines
- Problèmes de perception
 - des besoins réels d'entretien
 - des fonctions hydrauliques/hydrologiques
- Manque de main-d'œuvre
- Absence ou insuffisance de budgets
- Gestion évolutive des infrastructures
- Erreurs de conception et de construction
- Défis d'acceptation et de sensibilisation des citoyens

Bonnes pratiques répertoriées

Granby

Plan et guide d'entretien pour chaque ouvrage et coordination avec les travaux publics

Montréal, Vancouver, Edmonton, et...

Mise en place d'une équipe spécialement dédiée aux infrastructures vertes

Repentigny

Entretien des noues par les citoyens

Douai

Favoriser les ouvrages multifonctionnels dont l'entretien est déterminé par leurs autres fonctions

Kitchener

Concentrer ses efforts sur le nettoyage des unités de prétraitement

CMORISSETTE INC, 2019

CERIU

Candiac

Entretien de noues réalisé à l'interne pour mieux cibler les besoins d'entretien

Québec

Coordonner le séquençage du balayage des rues au printemps dans les secteurs plus sensibles

Paris

Délivrance de permis pour végétaliser l'espace public

Lille

Entretien d'espaces verts avec des troupeaux d'animaux

• •

CERIU

Coûts d'entretien

Disparité des coûts répertoriés :

- Nature des plantations
 (gazon, semis, vivaces, plantes ornementales, etc.)
- Complexité d'entretien

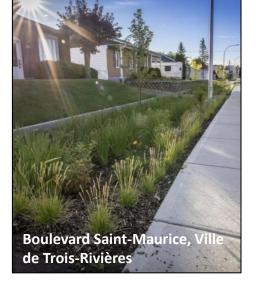
 (accès, conception, présence de sédiments, etc...)
- Fréquence des visites
 (variable de 1 à >20 visites/an)

Type d'infrastructure	Coût moyen \$CAD/m²/an	Valeur Min-max
Noues engazonnées	1	
Noues végétalisées	3	<1 à 30
Biorétentions	13	
Toits verts	4 *	4 à 12
Pavages/enrobés perméables	2	1 à 3
Systèmes d'infiltration	0 **	4 à 35 ***
Activité d'inspection	150 par ouvrage par visite	100 à 400 par ouvrage par visite
* Valeur médiane ** Valeurs rapportées *** Valeurs théoriques		

Coûts calculés en CAD\$ de 2022

Conclusion – 1^{ère} partie

Limitations de l'étude


- Informations limitées (infrastructures récentes)
- Disparité des données
- Sous-représentation régionale

Pour une intégration réussie et durable ...

- Intégrer la planification de l'entretien en amont
- Adapter la conception pour minimiser l'effort d'entretien

2^e et 3^e parties : Revue bibliographique et analyse avantages-coûts

Deuxième objectif:

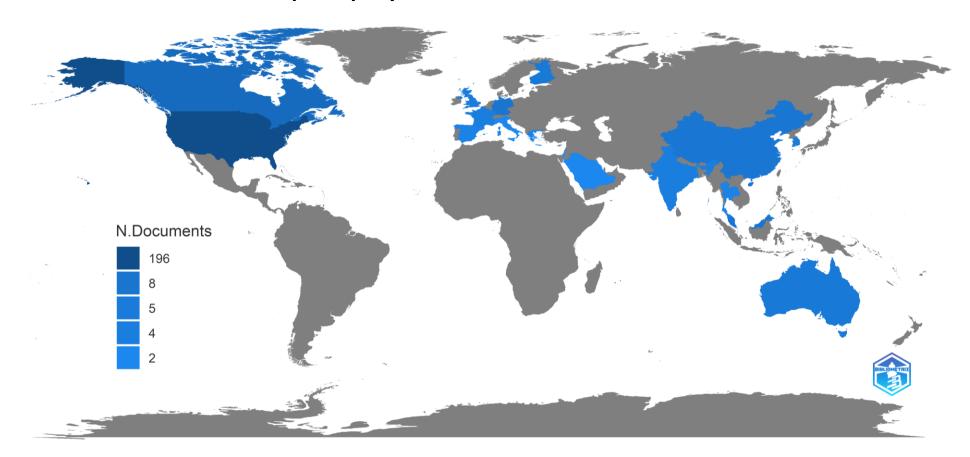
Revue de la littérature

Méthodologie Concepts clés

- Green infrastructures (possible variations)
 - Green infrastructure (GI)
 - Integrated management practices (IMP's)
 - Sustainable Urban Drainage Systems (SUDS)
 - Stormwater control measures (SCM)
 - Low Impact Development control (LID)
 - Best Management Practices (BMP)
 - Urban green infrastructure (UGI)
 - Water Sensitive Urban Design (WSUD)
 - Nature-based solutions (NBS)
 - Blue-green infrastructure (BGI)
 - Integrated Urban Water Management (IUWM)
 - Alternative techniques (ATs)

- Stormwater systems
 - Combined sewer overflow (CSO)
 - Sewer
 - Combined sewer
- Cost
- Maintenance
- Benefits
- Performance

Scopus



Résultats de Bibliometrix

Nombre de documents par pays

Difficultés associées à l'entretien

Difficultés

Accès limité ou impossible aux infrastructures

Manque de :

Moyens inappropriés pour collecter l'information

Perturbations causées par les activités d'entretien

Communication entre les concepteurs et les autres parties prenantes

Connaissance des interactions avec les systèmes existants

Entretien dû à l'absence de budget ou de définition des responsabilités

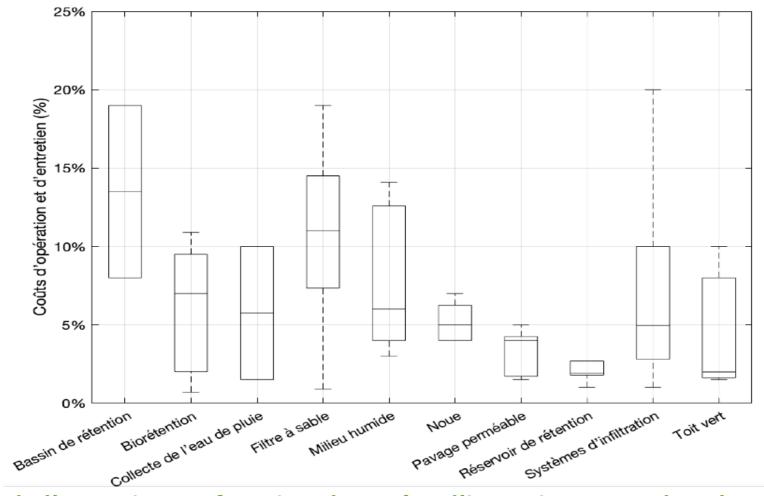
Avantages des infrastructures vertes

Type d'avantage	Dimension	Avantage
		Qualité des cours d'eau récepteurs
		Recharge des nappes phréatiques
		Amélioration de la biodiversité / des écosystèmes
	Environnementale Social	Réduction de la température
		Amélioration de la qualité de l'air
		Séquestration du carbone
Social		Réduction des débordements des réseaux d'égout unitaires
		Réduction du ruissellement
		Commodité et esthétique
		Loisirs et santé
	Sociale	Sécurité alimentaire
		Opportunité d'emploi
		Réduction de la charge sur les infras existantes
		Collecte des eaux de pluie
Privé Économique		Réduction du pompage et du traitement
	Economique	Économies d'énergie dans les bâtiments
		Appréciation de la valeur des biens immobiliers
		Augmentation de la longévité des bâtiments
		Taxes liées aux eaux pluviales

Outils de calcul des coûts du cycle de vie

- <u>E²STORMED</u>: Universitat Politècnica de València, University of Abertay Dundee. Europe, 2015.
- <u>CLASIC</u>: Financé par Water Research Foundation, US EPA et National Science Foundation Urban Water Innovation Network. É-U., 2021. Outil en ligne
- National Stormwater Calculator: US Environmental Protection Agency (EPA). É-U., 2019. Outil en ligne
- <u>Green Values Calculator</u>: *Center for Neighborhood Technology* (CNT). É-U., 2021. Outil en ligne

- Soutenir les décisions concernant les infrastructures vertes, hybrides vertes-grises et grises pour la gestion des eaux pluviales
- Création de scénarios d'infrastructures, intégrant des projections sur le climat et l'occupation du sol
 - évaluation des coûts du cycle de vie, des performances et des avantages

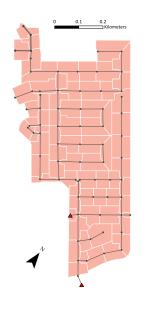


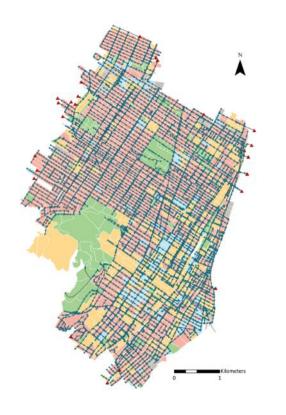
Évaluation des coûts d'entretien - Articles scientifiques

Coûts de l'entretien en fonction des coûts d'investissement dans les articles consultés

Troisième objectif:

Études de cas





Deux cas d'études au Québec

Cas A - 33 ha

Cas B - 1 252 ha

- ▲ Outfalls
- Junctions
- Conduits

Subcatchments

Type

- Commercial
- Green spaces
- Industry
- Institutional
- Residential

Analyse coûts-avantages

Coûts

• Coûts de construction

Infrastructure	Coût unitaire (CAD/m²)
Jardin de pluie	171
Cellules de biorétention	448

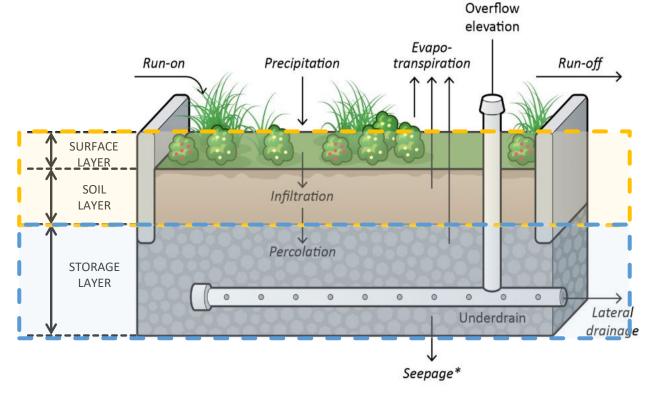
• Coûts d'entretien

Infrastructure	Coût moyen (CAD/m²/an)
Jardin de pluie	10
Cellules de biorétention	15

RS Institut national de la recherche scientifique

Avantages

Bénéfices		Valeur	Unités
Coût évité pour le réservoir	Réservoir de rétentio	n souterrain	
de rétention	Construction du réservoir	1400	\$/m³
Coût évité pour le	Coût de traitement des eaux usées		
	Coût Cas A	0.131	\$/m³
	Coût Cas B	0.110	\$/m³
traitement des eaux usées	Réduction des matières en suspension		
traiternent des edax deces	Coût réduction MES	0.6	\$/kg
	Concentration moyenne MES	48	mg/L
	Taux d'enlèvement	84	%
	Arrosage		
Économie d'eau potable	Coût de l'eau au Québec	1.97	\$/m³
	Portion du ruissellement utilisé	40	%
	Qualité de l'air		
Bénéfices environnementaux	Séquestration du C	0.31	kg C/m²/an
	Reduction des coûts de C	65	\$/ton/an
	Arbres		
	Captage du C	7	\$/arbre/an

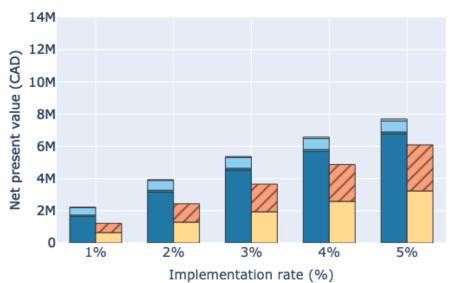

Création de scenarios dans SWMM

• Simulations pour la période de mai à octobre (pas de temps de 5 minutes)

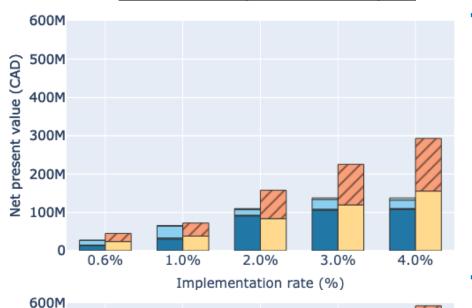
1. Scénario sans infras vertes : cas de référence

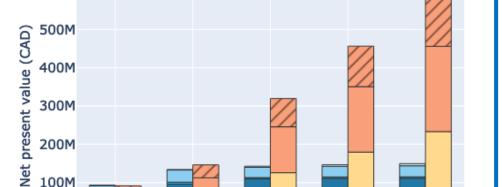
2. Scénario Jardins de pluie : sans stockage souterrain ni drain

3. Scénario Biorétentions : avec stockage souterrain mais sans drain


Source: CHI

Résultats





14M Net present value (CAD) 2% 3% 4% 5% 1%

Implementation rate (%)

Cas B – Occupations multiples

2.0%

Implementation rate (%)

3.0%

4.0%

1.0%

100M

0.6%

Jardins de pluie

Project benefits

- Avoided cost for CSO tank
- Treatment fee saving
- Water saving
- Environmental

Project costs

- **0&M**
- Construction cost
- Construction savings

Biorétentions

Conclusions

- 1. Les infrastructures de contrôle à la source des eaux pluviales :
 - requièrent des engagements à long terme, des fonds et du personnel qualifié
 - peuvent contribuer de façon positive au caractère durable des réseaux urbains de drainage, si les conditions locales sont prises en compte
- 2. Les analyses avantages-coûts et la réglementation peuvent supporter la prise de décisions
- 3. L'expérience pratique témoigne d'une grande variabilité des coûts d'entretien
 - dépend de la complexité de l'entretien, variable selon l'infrastructure
 - plusieurs bonnes pratiques permettent de réduire les coûts
 - faible documentation de ces coûts

Recommandations

Pour une intégration réussie et un fonctionnement durable dans le temps, ces ouvrages demandent :

Concertation de plusieurs parties prenantes au niveau de la conception, de la planification et de la réalisation.

Identification en amont du projet des rôles et responsabilités.

Pratiques de maintenance efficaces.

Approche participative avec les résidents pour assurer une meilleure acceptation.

Attribution de budgets spécifiques.

Promotion du partage de connaissances et des bonnes pratiques.

Mandat de recherche lancé par l'Observatoire de la gestion intégrée de l'espace public urbain (CERIU) et ses partenaires.

5 Partenaires fondateurs

8 Partenaires municipaux

Financement complémentaire

Restez en contact avec nos chercheuses!

Marie-Ève Jean

marie-eve.jean@ville.quebec.qc.ca

Laura Solarte

Laura.Solarte@inrs.ca

Sophie Duchesne

Sophie.Duchesne@inrs.ca

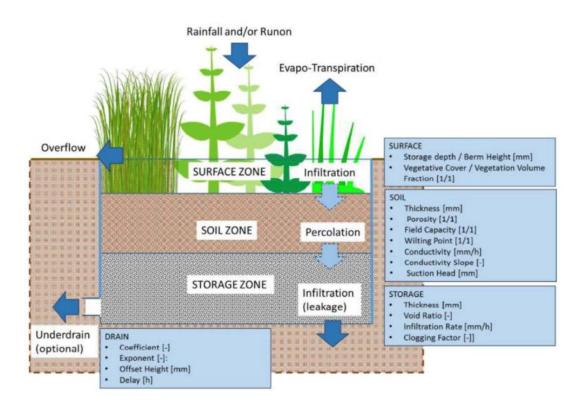
Restez en contact avec l'Observatoire!

Rafika Lassel

Directrice

Observatoire de la gestion intégrée de l'espace public urbain

CERIU


rafika.lassel@ceriu.qc.ca

Paramètres de simulation des infrastructures vertes

Khurelbaatar, G., van Afferden, M., Ueberham, M., Stefan, M., Geyler, S., & Müller, R. A. (2021). Management of urban stormwater at block-level (MUST-B): a new approach for potential analysis of decentralized stormwater management systems. Water, 13(3), 378.

Couche	Paramètre	Unité	LID-JP ¹	LID-BR ²
Surface	Hauteur de berme	mm	150	300
	Volume de végétation	fraction	0,1	0,1
	Rugosité (n Manning)	-	0,3	0,3
	Pente de la surface	%	0,5	0,5
	Épaisseur	mm	850	450
	Porosité	fraction de volume	0,25	0,437
Sol	Capacité capillaire	fraction de volume	0,105	0,105
	Point de flétrissement	fraction de volume	0,047	0,047
	Conductivité	mm/h	60	140
	Pente de conductivité	-	45	30
	Tension capillaire	mm	85	110
	Épaisseur	mm	0	600
Stockage	Ratio des vides	fraction	0,5	0,5
Stockage	Taux de fuites	mm/h	1	5
	Facteur de colmatage	-	0	0
	Coefficient du drain	mm/h	0	
Drain	Exposant du drain	-	0,5	
souterrain	Hauteur décalage du drain	(mm)	0	
Note: Utiliser un coefficient de drain = 0 dans une unité sans drain souterrain			ns drain	

¹ Ville de Montréal

² Jean, M. È., Morin, C., Duchesne, S., Pelletier, G., & Pleau, M. (2021). Optimization of Real-Time Control With Green and Gray Infrastructure Design for a Cost-Effective Mitigation of Combined Sewer Overflows. Water Resources Research, 57(12), e2021WR030282.

Coûts d'entretien

Noues et biorétentions

Disparité des coûts répertoriés :

- Nature des plantations
- Complexité d'entretien
- Fréquence des visites

1 à 30 \$/m²/an

Type d'infrastructure verte	Coût moyen annuel (\$/m²)	Nb de visites/an
Biorétention	32	12
Noue végétalisée	25	>20
Noue végétalisée	12	≈ 6
Biorétention locale	11	4
Saillie de vivaces	10	3
Noue / Biorétention / Plate-bande	9,5	≈ 5
Noue végétalisée	8	12
Noue végétalisée	7	≈ 5
Saillie avec semis annuels	6	3
Biorétenition de quartier	3,5	4
Noue végétalisée	1	4
Noue / saillie engazonnée	0,35	Au besoin

Coûts d'entretien

Toits verts

- Peu de suivi
- Similitudes avec les noues et biorétention

Disparité des coûts répertoriés :

- Nature des plantations
- Complexité d'entretien (nombre de travailleurs, contraintes d'irrigation)
- Fréquence des visites

Québec Vert, 2022

Coûts d'entretien

Pavage perméable

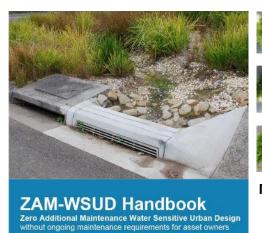
Disparité des coûts répertoriés :

- Peu de suivi
- Type de pavage
- Localisation (apports sédimentaires)
- Économie d'échelle

Type de pavage perméable	Coût moyen annuel (\$/m²)
Pavage enherbé	7
Pavé en blocs	2-3
Enrobé poreux	0,5-2
Décolmatage	3-60

Coûts calculés en CAD\$ de 2022

CMORISSETTE INC, 2019



Pistes pour minimiser les coûts d'entretien

- Faciliter les points d'accès pour l'entretien
- Favoriser des caniveaux et des trappes à sédiments en béton plutôt que des enrochements
- Choisir les végétaux en fonction de l'effort d'entretien, résistance au colmatage, au stress hydrique, aux sels, etc. ...
- Distribuer les différents types de plantations pour faciliter la tonte

Manningham Council, 2018

En partenariat avec :

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Plante & Cité: Nos missions

- > Conduire des études et des projets de recherche, pour répondre aux besoins du terrain, et produire une expertise technique
- > Produire des connaissances et diffuser des ressources scientifiques et techniques, pour aider les collectivités et professionnels à faire évoluer leurs pratiques d'aménagement, de conception et de gestion pour répondre aux grands enjeux de la nature en ville
- > Partager et mutualiser des réalisations innovantes au sein d'un réseau d'acteurs de la nature en ville (collectivités territoriales, entreprises du paysage, centres de recherche et de formation)

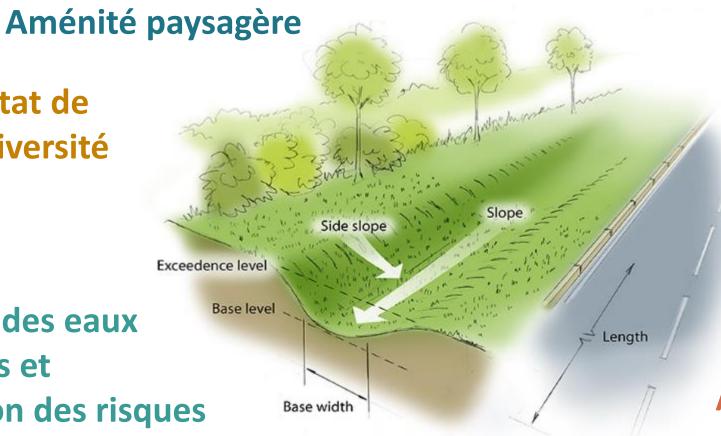
WEBINAIRE FRANCE - QUÉBEC - VILLE PERMÉABLE | 8 nov. 2024

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Présentation de projets

Sujets autour de la gestion des eaux pluviales :

- Revêtement Perméables des espaces urbains (2021) : synthèse technique et prescriptions sur la mise en œuvre et l'entretien des revêtements perméables
- **Vegepp** (2014) : choix des végétaux et aménagements des ouvrages de gestion des eaux pluviales
- Végétalisation des pieds d'arbre (en cours) : stratégie de conception et de gestion écologique des pieds d'arbre
- **N'OUPS** (en cours) : fonctions écologiques des noues végétalisées


Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Pourquoi les noues?

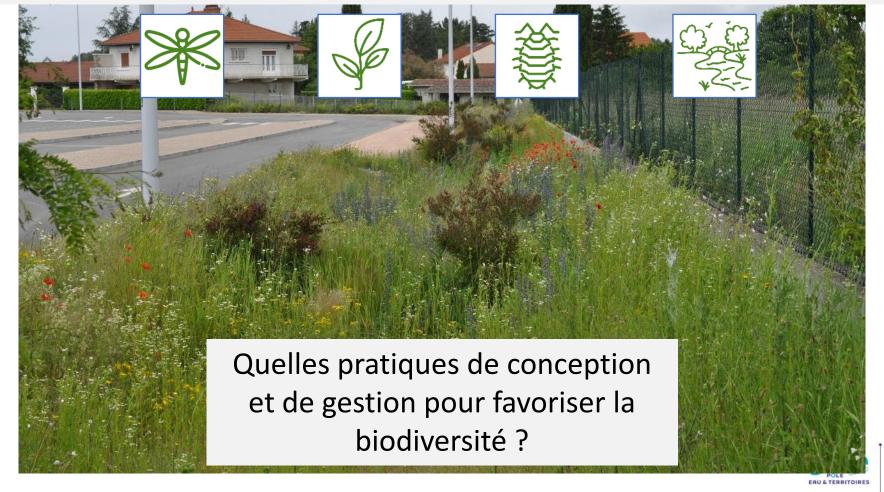
Habitat de biodiversité

Gestion des eaux pluviales et limitation des risques

de crue

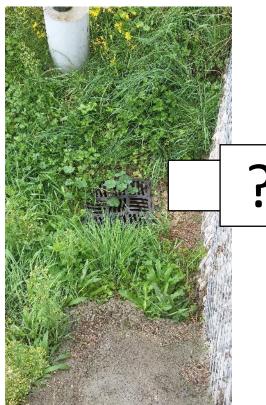
Rafraichissement de l'air

Amélioration de la qualité des eaux de ruissellement



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Valeur écologique des noues végétalisées ? Corridor, refuge ?



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Programme NOUPS

Equipe Plante & Cité

Partenaire financeur

Partenaires & comité de pilotage

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Démarche projet

01

Panorama de noues végétalisées

- Illustrer un panorama d'ouvrages de gestion des eaux pluviales
- Renseigner sur la diversité des noues végétalisées (morphologie, contexte urbain)
- Acquérir des informations sur les caractéristiques des noues, leur fonctionnement et leur rôle potentiel en termes d'habitat de biodiversité

02

Suivis écologiques et environnementaux d'ouvrages végétalisés

- Evaluation des fonctions environnementales/écologiques des noues en lien avec l'eau et le sol, le végétal, la faune (attraction des auxiliaires et pollinisateurs)
- Mise en lien avec les caractéristiques morphologiques de la noue et son mode de gestion

03

Synthèses et préconisations techniques

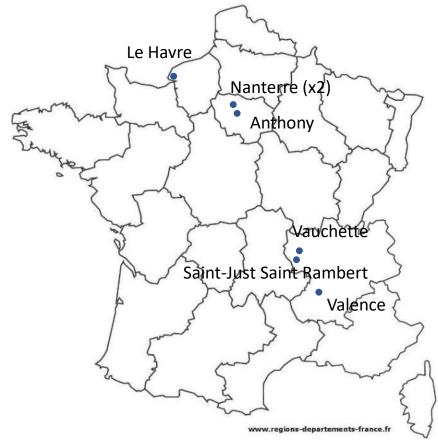
• Synthèse des éléments techniques autour de l'étude, la conception, la mise en œuvre et l'entretien des noues végétalisées pour plus de multifonctionnalités

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Méthode

Panorama de noues végétalisées

- Conception
- Gestion
- Objectifs/difficultés



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Panorama d'actions

Diagnostic écologique de noues végétalisées

Par site:

- Evaluation générale des noues et de leur fonctionnement hydraulique (quels parallèles avec les zones humides ?)
- Inventaire floristique inventaire entomofaune et évaluation de la faune du sol

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologique

Entomofaune terrestre:

- Espèces remarquables de biotopes spécifiques
- Indicateurs fonctionnels

Faune du sol:

- Groupes fonctionnels de la macrofaune/mésofaune
- Groupes fonctionnels des lombrics

Diversité floristique :

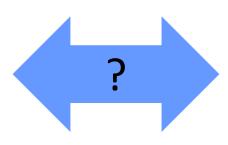
- Biotope pour chaque espèce observée
- Rôle écologique (attrait des pollinisateurs, support de biodiversité)

Evaluation du rôle écologique de la noue :

- Réservoir de biodiversité
- Continuité biologique ou écologique

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques



Conception/dimensionnement de l'aménagement Choix des plantations

Gestion et entretien de l'aménagement

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Diagnostic écologique de noues végétalisées : Le Havre

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Diagnostic écologique de noues végétalisées : Paris (Nanterre – Anthony)

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Diagnostic écologique de noues végétalisées : Valence/Saint-Etienne

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue Saint-Just Saint-Rambert

Dimensions de l'ouvrage :

Longueur (m): 80 m
 Largeur (m): 4,5 m

• Profondeur (m): 0,40 m

Volume de la noue : 284 m³

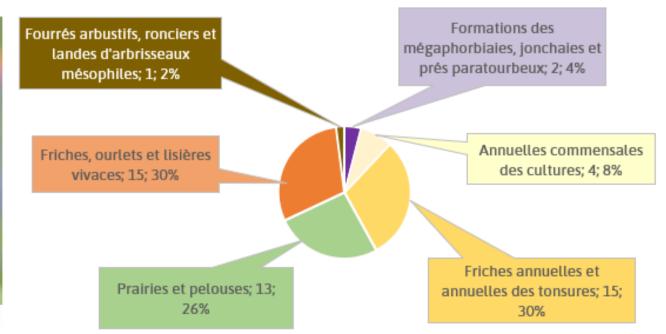
Pente des versants: N/C

• Surface du bassin versant : 4 400 m²

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue Saint-Just Saint-Rambert – diversité floristique (50 taxons)


Trèfle des champs (Trifolium gryense)

Logfie minime (Logfia minima)

Vipérine commune (Echium vulgare)

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue Saint-Just Saint-Rambert – diversité faunistique

Entomofaune : hyménoptères et orthoptères majoritairement

Faune du sol : coléoptères

Vers de terre anéciques et endogés

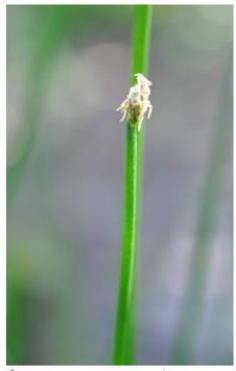
Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue Le Havre – Boulevard Leningrad

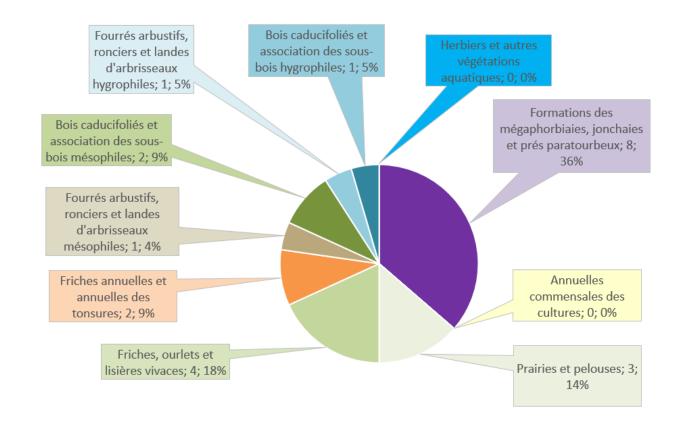
Ortie dioïque (Urtica dioica)

Iris faux acore (Iris pseudocorus)



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques


Noue Le Havre - Boulevard Leningrad

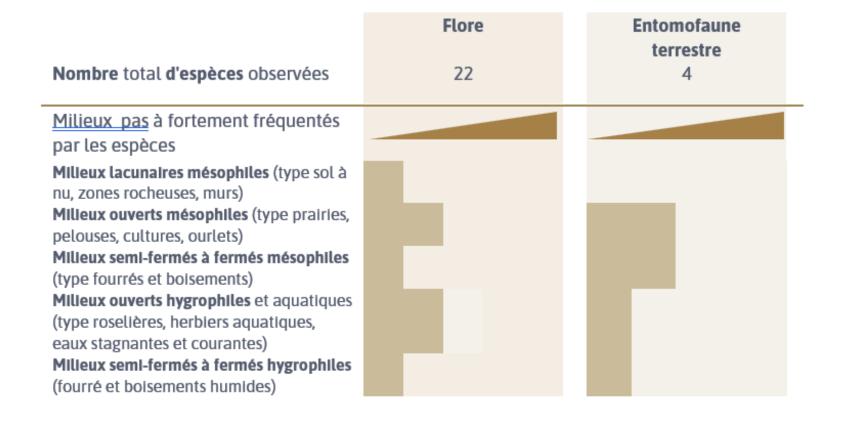
Éléocharide des marais (Eleocharis palustris)

Alpiste roseau (Phalaris arundinacea)

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue Le Havre – Boulevard Leningrad



Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue - Saint Marcel Lès Valence : importance de l'évolution temporelle

Mai 2024

Juillet 2024

Octobre 2024

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

Diagnostics écologiques

Noue - Saint Marcel Lès Valence

Mauve sylvestre (Malva sylvestris)

Ophrys abeille (Ophrys apifera)

Premier bilan des indicateurs

- Conception des aménagements orientées sur la gestion des eaux pluviales surface des noues = facteur limitant
- Implémenter les éléments de conception écologique (adéquation des plantations avec le sol et l'environnement) soin sur les pratiques de tonte/fauche
- Anticiper l'évolution de l'aménagement vers un milieu et adapter une gestion en conséquence
- Adapter les tailles et fauches aux périodes les moins impactantes
- Définir des préconisations sur la conception et la gestion des noues végétalisées

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

La suite?

- 1. Synthèse des analyses et des indicateurs de fonctionnement hydraulique et écologique des neuf noues végétalisées (en cours de rédaction)
- 2. Préconisations techniques pour améliorer le rôle des noues sur la biodiversité urbaine

Techniques de gestion à la source des eaux pluviales | pratiques d'entretien, coûts, avantages et potentialités

